Wärmebildkamera ermöglicht berührungsloses Messen in der Elektronik

 

Die thermografische Inspektion elektronischer Komponenten und Baugruppen ist ein etabliertes Prüfverfahren zur Fehlersuche und Qualitätssicherung – von der Entwicklung erster Prototypen bis hin zur Serienproduktion. Erkennen lassen sich beispielsweise:

  • Hotspots und atypische Temperaturverteilungen auf der Oberfläche von Leiterplatten, integrierten Schaltkreisen und Multichip-Modulen
  • Erhöhte Übergangswiderstände
  • Widerstandserhöhung durch Einschnürung von Leitungen
  • Verdeckte Risse in Verbindungsstellen
  • Verlustleistungen durch HF-Fehlanpassung
  • Fehlerhafte thermische Anbindungen von Kühlkörpern
  • Kurzschlüsse, Lötdefekte wie z. B. kalte Lötstellen

Thermografische Analysen während eines jeden Entwicklungsschrittes liefern wichtige Rückschlüsse für die Optimierung des Wärmemanagements sowie das Design von komplexen elektronischen Baugruppen. In der Elektronik-Fertigung wird die thermografische Temperaturmessung als vielseitiges Instrument bei der Qualitätssicherung eingesetzt. Sowohl bei der Einstellung kritischer technologischer Parameter und ihrer permanenten Überwachung als auch bei der Inline-Prüfung der in Fertigung befindlichen Produkte und deren abschließender Funktionsprüfung ist leistungsfähige Thermografie unverzichtbar geworden.

 

 

  • Live: Thermography Solutions for Power Electronics – Precise, Non-contact and High-speed (Sprache: Englisch)

    Power electronics is a key enabler for the future renewable energy based grid and plays an important role for improving the efficiency of power devices. E-mobility, industrial pumps and transportation systems benefit from the latest technologies of this research direction. They ask for faster active components, high power densities of miniaturized systems as well as absolute reliability.

  • training about active thermography

    Training: Active Ther­mo­graphy in NDT – Advant­ages, Chal­lenges, Oppor­tun­ities (kostenpflichtig; Sprache: Englisch)

    InfraTec offers a special seminar "Active Thermography in NDT" for thermography users with a corresponding professional orientation. It facilitates an efficient introduction to this NDT method. Participation fee for the training: 380 EUR*.

On demand: Mikrothermografie – Berührungslose Temperaturmessung im Mikrometerbereich

  • Was sind die physikalischen Besonderheiten der Mikrothermografie?
  • Welche technischen Anforderungen bestehen an ein Kamerasystem?
  • Welche Auswahlkriterien sind wichtig und relevant?
  • Was sind die Vor- und Nachteile gekühlter und ungekühlter Kamerasysteme?
  • In welchen Bereichen kommt die Mikrothermografie zum Einsatz?

Nach Eingabe Ihrer Kontaktdaten erhalten Sie den Link, um das Webinar anschauen zu können.

Bitte füllen Sie das Feld Anrede aus.
Bitte füllen Sie das Feld Vorname aus.
Bitte füllen Sie das Feld Nachname aus.
Bitte füllen Sie das Feld Firma aus.
Bitte füllen Sie das Feld Telefon aus.
Bitte füllen Sie das Feld E-Mail aus.
Bitte füllen Sie das Feld Ja, ich habe die Datenschutzerklärung gelesen und akzeptiert. aus.

TRAILER: Micro-Thermography – Contactless Temperature Measurement in the Micrometer Scale

Play
Das Abspielen des Videos erfordert Ihre Einwilligung in das Setzen von YouTube-Cookies, diese gehören zu den Werbecookies.

Weitere Merkmale der Nutzung der Thermografie in der Elektrotechnik und Elektronik

  • Beeinflusst weder die HF-Impedanz des Messobjektes noch die Wärmeableitung von selbigem, was der sicheren Vermeidung entsprechender Messfehler dient
  • Gestattet die gefahrlose Temperaturmessung auch an spannungsführenden Teilen
  • Komplette Erfassung der Temperaturverteilung und ihres zeitlichen Verlaufes von komplexen Baugruppen
  • Höchste geometrische Auflösung durch Einsatz von Messsystemen mit Detektoren sehr großer Pixelzahl und opto-mechanischer MicroScan-Einheit
  • Auflösung kleinster geometrischer Strukturen mit Hilfe von Makrovorsätzen und Infrarot-Mikroskopobjektiven
  • Detektion geringster Temperaturdifferenzen durch Verwendung gekühlter Photonendetektoren und Lock-In-Messverfahren
  • Komfortable Analyse und Dokumentation der Messergebnisse mit leistungsfähiger Auswertesoftware

Vorteile beim Einsatz leistungsstarker Thermografiesysteme

  • InfraTec-icon-detektor-1920x1536

    Detektorauflösungen von bis zu (1.920 × 1.536) nativen IR-Pixeln zur Prüfung komplexer Baugruppen

  • infratec icon optic

    Erstellung hochaufgelöster Detailaufnahmen mit Pixelgrößen bis zu < 1 μm unter Verwendung von Mikroskopobjektiven

  • Erkennung von Temperaturunterschieden zwischen defekten und intakten Strukturen im Bereich weniger Mikrokelvin dank hoher thermischer Auflösung bis < 0,015 K in Kombination mit dem Lock-In-Verfahren

  • InfraTec-icon-messgenauigkeit-1

    Messgenauigkeiten von bis zu ± 1 °C oder 1 % für exakte Messergebnisse

Thermografiesysteme für die Elektronik und Elektrotechnik individuell konfigurieren

In Abhängigkeit von der jeweiligen Aufgabenstellung können Nutzer ganz gezielt die für sie passende Ausstattung zusammenstellen. Ausgangspunkt wird dabei meist die Wärmebildkamera sein. Gekühlter oder ungekühlter Detektor? Welches Detektorformat? Soll das Thermografiesystem die Lock-In-Thermografie unterstützen? Wie viel Flexibilität ist beim Abstand von Messobjekt und Kamera gewünscht? Welchen Einfluss hat dies auf die Wahl von Mikroskopobjektiven und Makrovorsätzen? Je nachdem, wie die Antworten auf diese Fragen ausfallen, kann InfraTec Thermografiesysteme unterschiedlichster Leistungsstärke anbieten – von der einzelnen Kamera bis zum automatisierten modularen Prüfplatz E-LIT.

Automatisiertes Prüfsystem E-LIT

Elektronik- und Halbleitermodulprüfung - E-LIT

Detektieren Sie bereits während der Fertigung ungleichmäßige Temperaturverteilungen und lokale Energieverluste mittels des Lock-In-Thermografie-Prüfplatzes.

Kamerafilter für Wärmebildkameras

Wärmebildkameras für die Elektronik

Finden Sie die passende Thermografiekamera aus unserer Produktpalette zur Lösung Ihrer Messaufgabe in der Elektronik.

Wärmebildkamera VarioCAM HDx head von InfraTec

VarioCAM® HDx head Lock-in

Die kompakten Abmessungen und das geringe Gewicht gehören zu den Vorteilen der VarioCAM® HDx head Lock-in. Geht die Aufgabenstellung mit einem konstanten Messszenario in industrieller Umgebung einher, ist sie die erste Wahl.

Thermische Auffälligkeiten präzise lokalisieren und detailliert abbilden

Das Prinzip der berührungslosen thermografischen Temperaturmessung erlaubt die fehlerfreie Bestimmung der Temperatur von Messobjekten geringer Größe und kleiner Wärmekapazität. Selbst bei Verwendung kleinster berührender Temperatursensoren ist dies dagegen oft unmöglich, da deren Wärmeableitung häufig eine Verfälschung der Messergebnisse bewirkt. In vielen Fällen wird der Einsatz von Thermoelementen bereits von vornherein durch den Aufbau oder die Funktion der Schaltung selbst verhindert. Hinzu kommt, dass Strukturen elektronischer Messobjekte mitunter so klein sind, dass sich Temperatursensoren auf diesen gar nicht mehr anbringen lassen.

Dagegen sind Thermografiesysteme mit hoher geometrischer Auflösung in der Lage, derart kleine Strukturen klar sichtbar zu machen und darüber hinaus exakt deren Temperaturverteilung nebst zeitlichem Verlauf zu bestimmen. Mithilfe von speziellen Makrovorsätzen und leistungsfähigen Infrarot-Mikroskopobjektiven können Anwender auf der Oberfläche von Bauteilen wie Halbleiterbauelementen Hotspots von wenigen Mikrometern Größe thermografisch vermessen. Bei zusätzlicher Verwendung von auf dem Messobjekt aufgesetzten SIL-Linsen (Solid Immersion Lens) können auch noch kleinere Strukturgrößen detektiert werden. In Kombination mit entsprechenden Verfahren der Aktiv-Thermografie werden zur Fehlerlokalisierung Temperaturdifferenzen von weniger als 1 mK klar sichtbar gemacht.

Hierfür bietet InfraTec die jeweils passenden Objektive und Kameras mit gekühlten und ungekühlten Detektoren an, die über native Auflösungen von bis zu (1.920 × 1.536) IR-Pixeln verfügen. Per MicroScan – verfügbar sowohl für Kameras mit gekühlten wie auch ungekühlten Detektoren – lässt sich die geometrische Auflösung nochmals deutlich verbessern. Die so gewonnenen Thermogramme stellen sicher, dass Komponenten und Baugruppen bis ins kleinste Detail abgebildet sind und dadurch Fehler präzise erkannt und lokalisiert werden können. Thermografieaufnahmen mit der enormen geometrischen Auflösung von einigen Megapixeln machen sich vor allem bei komplexen Baugruppen bezahlt, wo viele Strukturen auf dem jeweiligen Mess- und Prüfobjekt gleichzeitig erfasst werden können. Ist die Pixelzahl des Detektors der verwendeten Kamera zu gering, erhöht sich die Anzahl der für die komplette Erfassung des Messobjektes erforderlichen Aufnahmen.

Lock-In-Thermografie in der Elektronik und Elektrotechnik

Mittels Lock-In-Analyseverfahren der IRBIS® 3 active von InfraTec können Fehler, die lediglich mK- oder μK-Abweichungen hervorrufen, verlässlich detektiert und örtlich zugeordnet werden:

Lock-In-Thermografie; Klassische Thermografieaufnahme – Fehlstelle nicht erkennbar

Klassische Thermografieaufnahme – Fehlstelle nicht erkennbar

Lock-In-Thermografie; Amplitudenbild – Analyse mittels Lock-In-Thermografie

Amplitudenbild – Analyse mittels Lock-In-Thermografie

Lock-In-Thermografie; Kombination aus Live- und Amplitudenbild

Kombination aus Live- und Amplitudenbild

Präzise Ergebnisse in kürzester Zeit

  • InfraTec thermography - High-speed Mode
    Mehr erfahren über den High-Speed-Modus

    High-Speed-Modus – Bildfrequenz und Empfindlichkeit erhöhen

    Dank der Binning-Technologie verfügen Wärmebildkameras über zwei Geschwindigkeitsmodi – den Standardmodus und den High-Speed-Modus, in dem die Bildfrequenz auf mehr als das Dreifache ansteigt. Das Bildfeld bleibt in beiden Modi konstant, so dass sich der mit der Kamera aufgenommene Szenenausschnitt nicht ändert. Im High-Speed-Modus erhöht sich zudem die thermische Auflösung um den Faktor zwei. Somit können sehr schnelle Temperaturänderungen elektronischer Bauteile und Komponenten lückenlos aufgezeichnet und analysiert werden.

  • MicroScan feature ImageIR
    Mehr erfahren über MicroScan

    MicroScan – Die Pixelanzahl vervierfachen

    Messobjekte extrem rauscharm und fein aufgelöst darstellen – dazu dient MicroScan. Mithilfe dieser Funktion lässt sich die native Pixelanzahl des Detektors vervierfachen. Die Folge sind Thermogramme von besserer Bildqualität mit geometrischen Auflösungen von mehr als 5,2 MegaPixeln. Jedes Pixel im Bild repräsentiert einen echten Temperaturmesswert und keinen interpolierten Bildpunkt.

  • InfraTec thermography - Geometrical Resolution

    Geome­tri­sche Auflö­sung – Effi­zient komplexe Baugruppen analy­sieren

    Wärmebildkameras von InfraTec mit gekühlten und ungekühlten Detektoren verfügen über native Auflösungen von bis zu (1.920 × 1.536) IR-Pixeln. Räumlich hochaufgelöste Thermogramme stellen sicher, dass Komponenten und Baugruppen bis ins kleinste Detail abgebildet sind und dadurch Fehler sicher erkannt und präzise lokalisiert werden können.

  • InfraTec thermography - Thermal resolution

    Ther­mi­sche Auflö­sung – Unter­schiede von nur wenigen Milli­kelvin bestimmen

    Zur Erkennung geringer Temperaturänderungen bieten Wärmebildkameras von InfraTec thermische Auflösungen bis < 15 mK im Echtzeitbetrieb. Durch das Verfahren der Lock-In-Thermografie lässt sich dieses Auflösungsvermögen weiter deutlich erhöhen. Dafür werden Prüfobjekte periodisch angeregt und zerstörungsfrei auf Fehler und Unregelmäßigkeiten hin untersucht.

  • InfraTec thermography - Feature EverSharp
    Mehr erfahren über EverSharp

    EverSharp – Messobjekte im Wärmebild stets scharf darstellen

    Mit der EverSharp-Funktion lassen sich alle Objekte in der Bildszene scharf abbilden, unabhängig davon, wie weit diese von der Kamera entfernt sind und welches Objektiv zum Einsatz kommt. Das automatische Kombinieren von Wärmebildern mit verschiedenen Fokusstellungen sorgt dafür, dass im resultierenden Wärmebild nur die scharf dargestellten Objektstrukturen abgebildet werden.

  • HighSense for thermographic camera series ImageIR®
    Mehr über HighSense erfahren

    HighSense – Immer die optimale Kameraeinstellung

    Dank HighSense haben ImageIR®-Anwender die Möglichkeit, auf Basis der Werkskalibrierung individuelle Messbereiche einzustellen, die optimal zur jeweiligen Aufgabenstellung passen. Per Software lässt eine große Anzahl solcher Bereiche übersichtlich speichern. Individuell benannt und dauerhaft gespeichert, kann der Bediener schnell darauf zugreifen. Gleiches gilt für das Ändern, Umbenennen und Löschen von Profilen. HighSense ist für verschiedene Kameramodelle der ImageIR®-Serie erhältlich. Diese Funktion kann optional zu bereits ausgelieferten Systemen hinzugefügt werden.

  • Thermal image during ignition of an airbag Image Small
    Mehr erfahren über Subwindowing

    Fenstermodus (Subwindowing) – Erfassung schneller Sequenzen

    Die Wärmebildkamera kann im Voll-, Halb-, Viertelbild- und Linien-Modus betrieben werden. Über die Kamera- Steuersoftware besteht die Möglichkeit, die erweiterte Subwindowing-Funktion zu nutzen. Mittels Click-and- Drag können so frei definierbare Teilbildformate schnell und komfortabel eingerichtet werden. Zur Erreichung dieser sehr hohen Bildwiederholraten wird jeweils ein definierter Teilbereich des Detektors ausgelesen.

  • Thermografie-Kameraserie ImageIR® mit neuer 10 GigE-Schnittstelle
    Erfahren Sie mehr über die 10 GigE-Technologie

    10 GigE-Schnittstelle für ein kräftiges Plus an Leistung

    Die 10 Gigabit Ethernet-Schnittstelle der High-End-Kameraserie ImageIR® erschließt diesen extrem schnellen Übertragungsstandard mit einer eigens dafür bei InfraTec entwickelten Netzwerkkarte. Diese arbeitet mit einsteckbaren, modularen, optischen oder elektrischen Transceiver-Modulen, die leicht wechselbar sind und als SFP+ bezeichnet werden.

    Je nach Ausführung des eingesetzten 10 GigE Glasfaser-SFP+ können Übertragungsreichweiten bis zu zehn Kilometer erreicht werden. Der Datentransfer ist dabei völlig unempfindlich gegenüber elektromagnetischen Störungen. Ein entsprechender Standard-SFP gewährleistet die Abwärtskompatibilität zur herkömmlichen GigE-Schnittstelle und somit die problemlose Nutzung der Kameras mit der neuen 10 Gigabit Ethernet-Schnittstelle auch in bestehenden Systemen – natürlich bei verringerter Übertragungsgeschwindigkeit.

  • Mehr erfahren über InfraTec-Objektive

    Hochwertige Volloptiken

    Hochwertige lichtstarke Präzisionsoptiken ermöglichen die Anpassung der Bildfeldgeometrie an nahezu jede Messsituation. Ihre Leistungsparameter sind hinsichtlich Funktionalität, Qualität und flexibler Anwendung optimal aufeinander abgestimmt. Dank IR-transparenter Linsenmaterialien und hochwertiger Antireflexionsbeschichtungen sind die Infrarotobjektive für verschiedene Spektralbereiche optimiert.

  • InfraTec thermography glossary - autofocus
    Mehr erfahren zum permanenten Autofokus

    Permanenter Autofokus

    Sich ständig ändernde Objektszenen erfordern das manuelle oder automatische Nachfokussieren. Die integrierte Permanent-Autofokusfunktion erleichtert diese Aufgabe. Im Falle einer Szenenänderung übernimmt die Kamera schnell und präzise eigenständig die optimale Fokuseinstellung. Das völlig neuartige, sehr leistungsstarke Autofokussystem ist laserbasiert und arbeitet äußerst zuverlässig. Selbst bei ungünstigen Umgebungsbedingungen wie schlechten Lichtverhältnissen, Dunkelheit oder geringen thermischen Kontrasten am Messobjekt liefert diese Funktion exakt fokussierte Thermogramme.

  • InfraTec Glossary Motorfocus
    Mehr Informationen zum Motorfokus

    Motorfokus für ImageIR®-Volloptiken – Mehr Komfort

    Alle wechselbaren Standard-Volloptiken der ImageIR®-Serie können mit einer Motorfokuseinheit kombiniert werden, die über die Kamera-Bediensoftware angesteuert wird. Sie ermöglicht die präzise, fernsteuerbare und schnelle Fokussierung. Außerdem steht eine Autofokusfunktion zur Verfügung, die selbst bei geringen Bildkontrasten noch zuverlässig arbeitet.

  • Integriertes Trigger- / Prozessinterface und Schnittstellen – Wärmebildkamera und externe Geräte digital steuern

    Das interne Triggerinterface garantiert eine hochpräzise, wiederholgenaue Triggerung. Jeweils zwei konfigurierbare digitale Ein- und Ausgänge dienen zum Steuern der Kamera oder zur Erzeugung von digitalen Steuersignalen für externe Geräte. Auf diese Art und Weise lassen sich beispielsweise der Betrieb einer Leiterplatte und der Takt einer Messung synchron aufeinander abstimmen.

    Die Auswahl verschiedener Kameraschnittstellen erlaubt das Verarbeiten analoger Daten, wie z. B. der Spannung direkt durch die Kamera und damit das Einfügen dieser Informationen in die thermografischen Bilddaten. In den Auswertungen mit der Software können relevante Größen einbezogen werden, was das Ziehen von Rückschlüssen auf die Ursachen von Temperaturänderungen erleichtert.

Elektronik-Leitfaden

Laden Sie unser Elektronik-Leitfaden "Elektronik / Elektrotechnik" herunter und erfahren Sie mehr über Thermografiesysteme für den Einsatz in Entwicklung und Produktion.
 

infratec-elektronik-b-de-mail.pdf

Bitte füllen Sie das Feld Anrede aus.
Bitte füllen Sie das Feld Vorname aus.
Bitte füllen Sie das Feld Nachname aus.
Bitte füllen Sie das Feld Firma aus.
Bitte füllen Sie das Feld Telefon aus.
Bitte füllen Sie das Feld E-Mail aus.
Bitte füllen Sie das Feld Ja, ich habe die Datenschutzerklärung gelesen und akzeptiert. aus.

Praxisberichte über Thermografie in der Elektronik & Elektroindustrie

Schadensanalyse an elektronischen Bauteilen | ©BTU Cottbus-Senftenberg
Mehr erfahren über die ImageIR® 8300 bei der Schadensanalyse an elektronischen Bauteilen

Mit Thermografie dem Fehler auf der Spur

Die thermografische Schadens- und Funktionsanalyse an elektronischen Bauteilen gehört mittlerweile zu den etablierten Prüfmethoden in der Elektrotechnik. Auch am Institut für Elektrische Systeme und Energielogistik der BTU Cottbus-Senftenberg nutzt man dieses Verfahren zu Forschungszwecken. Prof. Dr. Ralph Schacht beschäftigt sich in diesem Zusammenhang intensiv mit der Material- und Systemcharakterisierung sowie der zerstörungsfreien Fehleranalytik von Leiterplatten, elektronischen Bauteilen, Mikroelektronik als auch von Verbundsystemen der Aufbau- und Verbindungstechnik.

Erfahren Sie mehr über die ImageIR® 9300 für Nanotechnologien

Thermische Mikroantriebe für Nanotechnologien

Mikroelektromechanische Systeme (MEMS) bieten eine Vielzahl von Anwendungsmöglichkeiten auf dem Gebiet der Nanotechnologie. Alltagsbeispiele sind die Lageerkennung von Mobiltelefonen sowie der Einsatz in Airbags, Digitalkameras oder Herzschrittmachern. Weitere Applikationen sind vor allem im Bereich miniaturisierter medizinischer Diagnostik zu finden. Wachsende Ansprüche an die Miniaturisierung betreffen gleichermaßen die dafür erforderlichen Systemlösungen als auch die zu entwickelnden Sensoren und Steuerelemente.

InfraTec Thermografie-Anwenderbericht: CAU Kiel
Erfahren Sie mehr über die ImageIR® 8300 im Einsatz für leistungsstarke Elektroniksysteme

Leistungselektronik – Die Energie der Zukunft effizient steuern

Die Energieeffizienz von Elektronikbauteilen spielt in zahlreichen Anwendungsfeldern eine immer wichtigere Rolle. Und nicht nur das. Gefragt sind in unserem Elektronik- und Hightech-Zeitalter immer schnellere aktive Komponenten, höhere Leistungsdichten von miniaturisierten Systemen sowie absolute Zuverlässigkeit. Hinzu kommen der Anspruch an eine umweltbewusste Ressourcenbeschaffung und die Forderung, dass die Leistungssteigerung von Modulen parallel zum geringeren Energieverbrauch ablaufen soll.

Thermography in Process Automation - Isabellenhuette
Erfahren Sie mehr über die Thermografie in der Automatisierung

Thermografie in der Automatisierung

Die Isabellenhütte Heusler GmbH & Co. KG hat das Potential der Thermografie frühzeitig erkannt und setzt die Infrarot-Thermografie bei der Qualitätskontrolle der durch sie gefertigten niederohmigen Präzisionswiderständen ein.

Wechselrichter mit belasteten Bauteilen zur Lebensdauervorhersage - Bildrechte: @ istock.com / Mordolff
Erfahren Sie mehr über thermografische Mikroskopie in der Elektronik

Thermografische Mikroskopie in der Elektronik

Steigende Leistungsvorgaben für elektronische Bauelemente führen dazu, dass auf immer kleineren Flächen enorme Anforderungen an das Wärmemanagement gestellt werden.

Thermografie in der Elektronikprüfung - Bildnachweis: © iStock.com / Jimmyan
Erfahren Sie mehr über Thermografie in der Elektronikprüfung

Thermografie in der Elektronikprüfung

Die Firma Delphi setzt am Laborstandort Test & Validation Services des Unternehmens in Wiehl verstärkt Thermografie als Qualitätssicherungsmaßnahme in der Design- und Produktvalidation ein. Damit wird eine stabile hardwareseitige Grundlage für die Integration immer neuer Funktionalitäten in Automobilen gelegt, die letztlich einen wichtigen Beitrag zur Verkehrssicherheit liefert.

Mit InfraTec in Kontakt treten

Möchten Sie mehr erfahren?

Nicht selten sind Aufgabenstellungen mit besonderen Anforderungen verknüpft. Besprechen Sie gemeinsam mit unseren Spezialisten Ihre konkrete Anwendung, erhalten Sie weiterführende technische Informationen oder lernen Sie unsere Zusatzdienstleistungen kennen.

Deutschland

InfraTec GmbH
Infrarotsensorik und Messtechnik
Gostritzer Str. 61 – 63
01217 DresdenDEUTSCHLAND

Temperaturunterschiede von nur wenigen Millikelvin klar bestimmen

Thermografie-Aufnahme einer Leiterplatte

Generell hat die Thermografie inzwischen einen festen Platz bei Anwendungen innerhalb der Elektronik und Elektrotechnik gefunden. Gründe dafür sind etwa die Trends hin zu ständig kleineren, aber gleichzeitig leistungsfähigeren Bauteilen, die mit immer niedrigeren Versorgungsspannungen betrieben werden. Geringere elektrische Leistungsaufnahme geht in der Regel mit geringeren Temperaturänderungen einher, aus denen sich ggf. auftretende Fehler analysieren lassen. Thermografiekameras mit exzellenten thermischen Auflösungen bis < 20 mK im Echtzeitbetrieb werden diesen Anforderungen bereits grundlegend gerecht. Bei bestimmten Messaufgaben genügt das allein jedoch noch nicht. Zusätzlich ist dann das Verfahren der Lock-In-Thermografie notwendig, um geringste Temperaturunterschiede zu detektieren. Durch periodische Anregung lassen sich damit Prüfobjekte zerstörungsfrei auf Fehler und Unregelmäßigkeiten hin untersuchen. Die Messdauer bei der Anwendung des Lock-In-Verfahrens steigt mit der gewünschten Auflösung gegenüber einer Echtzeitmessung deutlich und kann mehrere Minuten betragen. Deshalb ist es besonders hilfreich, wenn solche Messungen mit einer großformatigen, geometrisch hochauflösenden Kamera „in einem Zug“ gemacht werden können.

Eine Kamera mit geringerer geometrischer Auflösung zwingt bei der lückenlosen Erfassung des Messobjektes dagegen zu vielfach wiederholten Messungen, zumal, wenn sich ein Fehler nicht immer sicher reproduzieren lässt. Das beim Kauf einer kostengünstigeren Kamera vermeintlich „gesparte“ Geld raubt dann dem Entwickler bei der Erprobung oder der Fertigung bei der Ausgangsprüfung sehr viel Zeit und kann im Resultat zu erheblich höheren Kosten führen.

Exzellente Abstimmung von Wärmebildkamera, Thermografie-Software und Peripherie

Besonderen Wert legt InfraTec auf das optimale Zusammenspiel zwischen Wärmebildkamera und Software. Mit Blick auf den Einsatz in der Elektronikfertigung bietet die Thermografie-Software IRBIS® 3 umfangreiche Funktionen, die die Nutzung passiver und aktiver Thermografieverfahren unterstützen. Dazu zählt beispielsweise der Vergleich zwischen aktuellen Thermografie-Bildern und einem Referenzbild sowie bei Lock-In-Thermografie die Darstellung von Amplituden und Phasenbildern mit einstellbaren Parametern. So lassen sich Fehler zielsicher erkennen und deutlich darstellen.

InfraTec thermography software IRBIS 3

Für thermografische Messungen an Leiterplatten und Hybrid-Baugruppen hält die IRBIS® 3 ebenfalls eine zugeschnittene Lösung bereit. Eine große Herausforderung bei derartigen Messobjekten erwächst aus der Fülle der verwendeten Bauelemente. Diese bestehen wiederum aus einer Vielzahl von Materialien, wie verschiedenen Metallen, Keramiken und Kunststoffen, die jeweils ganz unterschiedliche Oberflächeneigenschaften aufweisen. Für eine präzise Temperaturmessung ist der Emissionsgrad des jeweiligen Materials an der Oberfläche von besonderer Bedeutung. Mit der Software IRBIS® 3 lässt sich der Emissionsgrad für jedes einzelne Pixel sowohl bestimmen als auch einstellen und damit die gemessene Temperatur unter der Berücksichtigung des Emissionsgrades und der Umgebungstemperatur automatisch korrigieren. Zum Einsatz kommen hierfür sowie für die Berücksichtigung weiterer Einflussfaktoren verschiedene Korrekturmodelle. Diese bilden die jeweilige Messsituation so nach, dass alle das Messergebnis beeinflussenden Faktoren, wie die Strahlung aus der Umgebung, verwendete Fenster oder Dämpfungseigenschaften der Messstrecke, berücksichtigt werden. Auf diese Weise kann der Anwender sicherstellen, dass er bei Einhaltung der entsprechenden Bedingungen stets exakte Temperaturmessergebnisse erzielt.

Optiken

Das umfangreiche Sortiment an hochwertigen Präzisions- Wechseloptiken ermöglicht die Anpassung der Bildfeldgeometrie an nahezu jede Messsituation:

  • Weitwinkel-, Normal- und Teleobjektive
  • Close-Up-Makrovorsätze
  • Mikroskopobjektive
  • Solid Immersion Lenses (SIL)

Zubehör

Neben den Optiken können Anwender aus einer Vielzahl an Zubehörkomponenten wählen:

  • Anregungseinheiten für die Aktiv-Thermografie
  • Zwei-Achs-Positionierungssysteme
  • X-Y-Messtische
  • Motorische Mikroskopstative

Veröffentlichungen unserer Kunden

Transiente Methoden der Infrarot-Thermografie zur
zerstörungsfreien Fehleranalytik in der mikroelektronischen
Aufbau- und Verbindungstechnik

Wärmebildkamera: ImageIR® 8300

A reference-free micro defect visualization using pulse laser scanning thermography and image processing (Sprache: Englisch)

Wärmebildkamera: ImageIR® 8300 Serie

Modeling and Fabrication of Pt Micro–Heaters Built on Alumina Substrate (Sprache: Englisch)

Wärmebildkamera: ImageIR® 8300

Lanthanide-doped glasses as frequency-converter for high-power LED applications

Wärmebildkamera: ImageIR® 8300

Temperature gradients in microelectrode measurements: Relevance and solutions for studies of SOFC electrode materials

Wärmebildkamera: ImageIR® 9300

Microheater based on magnetic nanoparticle embedded PDMS

Infrared camera: VarioCAM® series

Verwandte Branchen und Anwendungsgebiete

  • Aktiv-Thermografie - Bildnachweis: © Rainer / Fotolia.com
    Aktiv-Thermografie

    Aktiv-Thermografie

    Nutzen Sie die aktive Thermografie zur zerstörungsfreien und berührungslosen Werkstoffprüfung, sowohl für automatisierte Inline- als auch Offline-Lösungen.

  • Mikrothermografie
    Mikrothermografie

    Mikrothermografie

    Die Mikrothermografie ermöglicht die thermische Analyse feinster Strukturen im µm-Bereich und somit eine detaillierte Darstellung der Temperaturverteilung auf komplexen elektronischen Baugruppen und Komponenten.

  • Thermografie an Elektroanlagen
    Inspektion von Elektroanlagen

    Inspektion von Elektroanlagen

    Überprüfen Sie elektrische Installationen oder HV-Netze mit einer Wärmebildkamera auf gefährliche Hotspots.